Автор Тема: Мир является в точности таким, каким мы его видим.  (Прочитано 5412 раз)

0 Пользователей и 1 Гость просматривают эту тему.

Оффлайн vstep

  • Администратор
  • Ветеран
  • *****
  • Сообщений: 1602
  • Пол: Мужской
    • Сайт села Карпово МО
По моему потрясающе интересный эксперимент! И с далеко идущими выводами из него. Да, квантовая физика та ещё "штучка" :)
---

Австралийские физики доказали, что реальности не существует

Пока что это верно только для объектов микромира

Ученые из Национального университета Австралии провели квантовый эксперимент, который подтвердил известную теорию о том, что реальность не существует до тех пор, пока ее не измерит сторонний наблюдатель. Пока что она актуальна для объектов очень мелкого масштаба. Результаты эксперимента были опубликованы в авторитетном издании Nature Physics, - сообщает сайт «Новое время»

Исследователи решили повторить известный эксперимент, который лежит в основе предсказания квантовой физики о природе реальности: никакой реальности не существует до тех пор, пока мы ее не измерим, по крайней мере, в очень маленьком масштабе.

Исследователи задались вопросом: если речь идет об объекте, который может вести себя либо как частица, либо как волна, то в какой момент времени объект «решает», как именно себя вести?

По логике, объект должен быть либо частицей, либо волной по своему происхождению, а следовательно не имеет значение, кто проводит измерения либо наблюдения за объектом, поскольку его природа от этого не изменится.

Но согласно квантовой теории, это не так, она предполагает, что результат зависит от того, как объект измеряли в конце его пути. Австралийские физики нашли доказательства того, что все происходит именно так.



«Наше исследование доказывает, что измерение решает все. На квантовом уровне реальность не существует, если вы ее не видите», - заключает руководитель исследования Эндрю Траскотт, физик из Австралийского национального университета в Канберре.

Впервые подобный эксперимент был предложен американским физиком-теоретиком Джоном Уилером в 1978 году, который предлагал использовать лучи света, отраженные зеркалами. В те времена технологии не позволяли провести такой эксперимент, и только 40 лет спустя группа австралийских исследователей смогла реализовать идею Уилера, используя атомы гелия, взаимодействующие с лазерными лучами.

Исследователи заключили атомы в состояние “конденсата Бозе-Эйнштейна”, которое позволяет наблюдать квантовые эффекты на макроскопическом уровне, а затем удалили все атомы кроме одного. Этот единственный атом пропустили между двумя лазерными лучами, которые выступали в той же роли, в которой мелкая сетка выступает для лучей света - в роли неравномерной решетки. Затем на пути атома была добавлена вторая такая «сетка».

Это привело к искажению пути атома, он отправился по обоим возможным путям так, как это сделала бы волна. Иными словами, атом проходил двумя разными путями. Зато при повторном эксперименте, когда вторую «сетку» убрали, атом выбирал лишь один возможный путь.

По мнению исследователей, тот факт, что вторая «сетка» была добавлена уже после того, как атом пересекал первое «распутье», предполагает, что атом, образно говоря, так и не определился со своей природой до того, как подвергся наблюдению (или измерению) во второй раз.

«Предсказания квантовой физики относительно взаимодействия объектов могут казаться странными, когда речь идет о свете, который ведет себя как волна», - поясняет Роман Хакимов, сотрудник Австралийского национального университета, принимавший участие в исследовании, а эксперименты с атомами, которые имеют массу и взаимодействуют с электрическими полями, делает картину еще более невероятной.

Проще говоря, если принять тот факт, что атом выбирал определенный путь на первом распутье, эксперимент доказывает, что будущие измерения могут оказывать влияние на прошлое атома, поясняет руководитель исследования Энди Траскотт.

«Атом не совершал путь между условными точками А и B, - поясняет он. - Только после измерений в конечной точке наблюдения, становилось понятно повел ли себя атом как волна, разделяясь по двум направлениям, или как частица, выбирая одно».

Несмотря на то, что все это звучит дико для непосвященного человека, авторы исследования говорят, что эксперимент является подтверждением квантовой теории. По крайней мере, в мельчайших масштабах.

Эта теория уже позволила создать ряд вполне работоспособных технологий в области лазеров и компьютерных процессоров, но до сих пор таких ярких экспериментов, подтверждающих ее, не было. Траскотт и Хакимов в сущности нашли подтверждение тому, что реальность не существует, пока мы ее не наблюдаем.

Это один из основополагающих тезисов квантовой теории. Именно его невероятность с точки зрения обывателя, для которого дождь не перестает идти, даже если ты закроешь глаза, чтобы его не видеть, делают квантовую теорию «оторванной от реальности».

До сих пор не было найдено никаких доказательств того, что этот принцип действует в реальности. Мысленный эксперимент Уилера, равно как и подтверждающий его практический эксперимент Траскотта, пока относятся лишь к квантовому уровню.

В то же время, некоторые философы считают, что даже будучи неприменимой к макро уровню, квантовая теория может быть полезной для обывателя, поскольку (будучи грубо сформулированной) гласит, что мир является в точности таким, каким мы его видим.
---
Источник